x^a( a 为常数)、指数函数y = a^x(a>0. a≠1)等。(文章内容来源于网络,仅供参考)
基本初等函数求导公式整理
1.y=c y'=02. y=α^μ y'=μα^(μ-1)
3. y=a^x y'=a^x lna
y=e^x y'=e^x
4. y=loga,x y'=loga,e/x
y=lnx y'=1/x
5. y=sinx y'=cosx
6. y=cosx y'=-sinx
7. y=tanx y'=(secx)^2=1/(cosx)^2
8. y=cotx y'=-(cscx)^2=-1/(sinx)^2
9. y=arc sinx y'=1/√(1-x^2)
10.y=arc cosx y'=-1/√(1-x^2)
11.y=arc tanx y'=1/(1+x^2)
12.y=arc cotx y'=-1/(1+x^2)
13.y=sh x y'=ch x
14.y=ch x y'=sh x
15.y=thx y'=1/(chx)^2
16.y=ar shx y'=1/√(1+x^2)
17.y=ar chx y'=1/√(x^2-1)
18.y=ar th y'=1/(1-x^2)
基本初等函数的介绍
在数学中, 不严格地说, 初等函数是由常函数, 幂函数, 指数函数, 对数函数, 三角函数和反三角函数经过有限次的四则运算(加, 减, 乘,除和有限次幂运算) 及有限次函数复合所产生的函数, 而且可以在其定义域上由"单一表达式"表出。
对于实自变量 来说, 基本初等函数定义如下:
常数函数: y=c , c为实数。
有理函数: y=p(x)/q(x) , 其中 p(x),q(x) 都是多项式。
指数函数:y=a? (a>0且a≠1)。
对数函数: y=log?x (a>0且a≠1). 对数函数定义在 (0,+∞)上。
幂函数: y=x? ,r∈R 。
三角函数: 正弦函数y=sinx , 余弦函数 y=cosx 以及作为其分式的正切, 余切, 正割和余割函数.
反三角函数: 反正弦函数主值 y=arcsinx (值域为 [-π/2,π/2] ), 反余弦函数主值 arccosx (值域为[0,π] ),
以及作为两个反三角函数与幂函数复合的反正切, 反余切, 反正割和反余割函数。